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BHE LTk, MREOMKET Y /v T 4 —I2 X D EiEmMEDIRAR ) (oxygen and capacity
limited thermal tolerance) | (OCLTT) 2NH4 Th D, ZIVIIMEIEENM) O LMEFEREZ & OfR
FHAERD, FHIRIC L DRI L HDBEWEEICEVONTREHENEC2HLTHD, KIET
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https://ja.wikipedia.org/w/index.php?title=Endotherm&action=edit&redlink=1

DT — 5 ORI IITWEKIEOLEE EFHBI LTI Y . F72 1950 FFARLAKET 10 4R4 720
51.5+33. 3km DA DAL GEFAHL, b b - B FERZET) LShTnd, —F, K
ARTHIREEHOL Y « 7 NOFHHEEIL 10 2720 29.0+15.5km TH Y, KELRER
DOFHEICHAD LESTRIETH D, WEEEHOL Y - o7 ML, AR BRI Z THEEOK
EFACCIIELOM BEMER O X 9 KA L 2 BER L HF5 LT D, S HICHEREET
BEhOHER & LT, Wi/ EIC X MR 7054 B COBOF A ATEEME 2 b5 2 5
VENDH D, 2O L THEEEY OLYIBLEN 2 BB O - Tk, EEOREN - FEREE
RIS N DAY, T L OFER E U THEBEICI T 2RI 2 B8N L 5 B DA
EREL DR D,

B LS TR RIS 2R &, EE (Acclimation) & WEfnfDBIEIELER TOE(L % fE
9 Genetic Adaptation ® —-D AMDEREEE(~DREMRRBIIEE TH D, NHISIX, &
WIBEEER 1 DOBIB T XA 7T Db & T, BEICS U THA 2RI EZRT 2 & (RIPEDO ]
PE LIRS I X DBREADISETH D, ZHITEEHREIR E B0 | EARMIIEEE RO
RNTE T, FH 2 BEE K OB ORI 72 728 5 T ORBUC X DBER AR EniE T b,
BT IR DI 5 722 & OEB) OB L WIHEOBREES Tl O REEZER SRR - 22
AT — B LR DB AEMIERT 5, > T, 2D X 9 25 COAEMBEITE OBIE
Rtk & U CEiRmtE 2 S R WIEISORE 2 Ffo TV A ERM BN TWD, Fio, FHEEICH
9 D HGOWHFEEM AL ST %, RAFEEOH 5 &R & ORI ENAL ORI & 50 %
FHARTAFFETIL, BRI OWRE AN DS Z DIRERE R bR, A% O S 6R 5 KR EFIZH LT
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fE, BB EOWEEM TR INTNDEN, ZO=ES ) MIIHRFEO R
TREEDS, ED LD BB TITON TV DI EM TIXELIE- &0 L,

WAKIR E5-72 EORIEEBIY — U 4 OF 5 EMITH T 5 BREIRO EZERFEN TR,
FAEMDOAETE Rk A RIEE. 52 W3 B RERFEOBISIZRIEICEE 2B b ax b7 b3 AlEE
MRS D LN TH D, —J, WPEAEMPREEBNI 3 L CRABAIZRMEIS TIRE L TT< I
X, [IBEEBOKE S EZOEEE L 5 O IMIRER LW AT, FAEMREORF SRR
R SOMENTOBBHIRZERIE R EDNFIRIERE L 2> TnDd, —FH T, FEBGICB W TAEY
FEEE D220 - BRI 2RI RIS O 7 & 2 25T 5 2 & IEA S Tldu,

BT, BHEMOEMEY 77 > 7 b BT, ERENTOmESELOM N THhN D X
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R D R 25 AR COBREZABNZ IR 4 726 D238 573, TPCCAR6 (Cooley, et al. 2022)
TIXEREEIT O #MERIERRIC X DAY ~DEBEN R E NE OIE, HEAKIRD LR Wk
b, BEEFAKBLOWKRKD =2>ThHhod EEXTWD, HiKiE EF SWHERBEICOVL T, KA
D ALIRFE GO TRBHRLRICL 2L DO TH DM, MEEBMELIIRE A O R bR
PUWHEIC S T2 BT MSLONRTH D, £o, WEOAREF KO KITIMEDOS EIR S CHRFE
FDNKRED DWHENTBICELE S D Z LD, ZOMEIRAS 2T 2@ % 2 RO KK OIRE(L
RENREMRTABETH D, 22 TiE. ZO=ZSDEROF TIRBGIZ X AV ARED R
H LT, Ve O SRR 22 B U CRETOH LA RN T 5.

2.1. EROWFEITRITDREKIR LR L ZOMRTH

F9, RERTOWFEDKIR EFAIZ DWW TR %, IPCCAR6(Cooley, et al.2022) T, [1850-1900
DD 2011-2020 4F £ TITHFER RO FEIHY 72 KR TT 0. 88[0. 68-1. 01]°C E&H- L, 1 T% 1980 4
D 2020 FEE TIZ 0.60[0.44-0. 741 CEH L7-) £ H D, ZOMHEAKIED EREEICIT, HARE
ZUZED 10 FFA T — /)L TOEEBDNH VD, 1910 FFENS 1940 FEHITT T E, 1970 FHEE 5
2000 4RI NT TOMREe BRI & 1940 AR5 1970 AR H T T &L 2000 4FFiTE
5 2010 FEARFTHT2NT TORUXMEIAI ORI R 5415 (K 1 72 TRV A - KSR JT . 2020)
Fio, WEANCR D & ZO—HOM T, 4 > R¥EE T ERER TR b K& £ m KR A7
AT TWDLOITx L, WEHFEERIC KV FERVE, KREFEORER, JERPEFE. B X OVA B AT
O _FFEEITEOVTFREL TS (X 14, IPCCARG, Cooley, etal.2022), UL, 21 fibftoi&d
DIZIZ, EOMERE LTV AITBNTH, 27K &b 84% DI TORE /KRN LAHT25 & T
I D (IPCC ARG, Fox-Kemper, et al. 2021), 37205, 1995-2014 4725 2081-2100 4EDHIC
PRI N D REKIRO N 2 EFIESSP1-2.6 D2 U A TiX 0. 86[0. 43-1. 471°C., F 7=, SSP5-
8.5 DY U A TIL2.89[2.01-4. 071 C L HEE STV B,

0.75

kL K=0.60 (C/1004F)
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B 1 (7). FE5Em KR (REREY) OWAFEZOHR

FAEDMEARVER, 5 EBEFHENAFTVER, R AROIER, FEMEIT 1991~2020 0 30 43
fE CCEREE - KRBT, 2020),

1 (). HadISST1.1 12X % 1925 4E/ D 2016 £ TO AL Y470 OFEEAIE (C) DEL
(IPCCARG, 2022)



O XD % WEEREAKIRO ERIE, HERIEBE(LIZ L0 HIERS 27 ANER LB 2L ¥ —0
#990% ZMELENELY IA ATV D &5 9 IPCCAR6(Fox-Kemper, etal. 2021) O & A LT\ 5,
EE T TRV E OISR, 1990 FCEENBITENLIATE LR TRELS > TEY |
1993 FEDORIHZ TS & 1993 4FLLATIE 10 4EH72 D £ 3.9 X 102 J 72o72D 3 1993 LI
10 HZ0 K 10.0 X 102 J L7eb | WIMEHENBLZ 2.6 5L o7 CUHRTFA - RGT,
2020),

2.2. OBRERQEEHRIZE T A2REKE LR L EOFRTH

O DE O JEHDHEHE T OWFR AR OHERE DT — 2 13 1991 - 2020 DO L LTE EH TV D (K
2) . THICXD L. BAREMIZERT 2 5aa0FEMmmAKIR () o ERRIE, +1.24°C/100
LS TWD (K2, STERMEE « KT, 2020) o ZHUEK 1 ISR L= 2EE TORIT 100 4
B2 ORI FEAKIEOBINTH D, 0.88°C LV /) REAHEMETH D, £2. DIE
DOJELWHE TIX, AR CO®mVERAKIROEME G, 2—7 7 KE[ITO EFR, KFE
INETO LA %Z EEl> TWDHEN G0 D, HROFEEZIR O B TR K - TRk
DM, W EEARTEETO ERAFENRRE o TND, 6o THARBEDMHEHEIZB W T, KEElC
PR OWEE KIR O EAENRKE VDL, KETOKRE KR A ORE LT T 5 lHeEE
MR S TWD CUERFEE - RGBT, 2020) . 7o, RKUBERGE T V& VTt OWF5E
TIE, O ERFIRKOFROER & LT, HEHE FEIZW TR REER IS E X 2R o
it L. BOIURZ L S WEER O L & 5 5 KRR EWETOm T OENE DS > alfErED
FEfE 4T % (Toda & Watanabe, 2020) .
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2BHFT itimE D -
.24 g 2 AT OWEIC R KR (PR o BRE (C
H#&E
g +1.55 /100 4F)
o] 187 086 | 1900~2019 £ FE TO LFARE2I/RT, ERROPTFIIERKAE 99%LL | T
- +1.47 +0. . — N
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FEIE

+1.01
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EE KRBT (2020) 11X, HSEELDHEHE TO 21 RIS T DR AKIED ERICOWT, 2
OO BRF LTV ATEESS FRIZAELE LTS (K3) . ZHUE SI-CAT iEEET MZ L -
TWDHD, EOTLIIKGHIEHT TP SITEEIRET L Th Y | JERFEEL T AR E L
TW5, TR XL, 21 kR (2080 - 2100 4=5F44)) Tk, 20 iR (1986 - 2005 4-445))
\ZH_TRCP2.6 DL F U ATI1.1£10.6°C, RCP8,5 DI F U A TIL3.6+1.3CHOLANTHE
nTns (M3) ., £7-. BARFEOREARD EFIT—HETITMELS . RCP2. 6 Tix. HAUETH
NibEL, ZUIINE TOFIEDONNZ— L —FH L TW\Wb, —J, RCP8.5 [T/ % & =fEppse
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SV CHIENFE LN E FHRISND, 788, ke Cix 2022 4FRKCARE . R EMEKIEN AT
TRV EL > TWAEF, 72, AKE300mMmTHH I0CHLEL o TWD Z ENMER I (&
RIT 1P, 2023) , ZORKITEBEROIL EICLD EEZ LN TWS,

(a) RCP2.6 § (b) RCP8.5

En VA ]
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Yz I

¥ 3 SI-CAT EF /LT —XIZHS<, 21 ftfiER
(\ZH1T 2 A AU O WS- A KR O 20
Koo EFME (C) o (@ 1 2CEHYF U A
(RCP2.6) . (b) X 4CEHF VA4 (RCPS.5) 12X DA
Y, =T O M O ILAEHEK U 99%LL L CREFHIC A
IefEig . Tx) EATINUT-MEIL 95% L E CHERMEE R L

/] _
L EER | Twa, ERES HEHD Lo, REHNICEERE

WM AT RN L 2R LTV 5,

3. KR EFITHT D UEEAEYFEE DIRE L TSRS

ARFECIIBRIZRLA U 7z tEKIE R LI X KR EAF-IZ E D L 5 ITHFFEDAEMFEEDNILE LT
LERETT 5, ETHIOICHMIEREE TH 2MKIE L EEAEY & ORRROBRZIRD 5720, &
RIS X WA ORBEEN R EE L D2 OWTABENSORGLE . ZHUTH-S < &R
MDA & S BIZZ DRFUOW TN T D,

HERIEBEAGIZBEICBEZE D S D ThH 0 | PR EMEKIRIL 1CES EF L TWD, AUk LT
FEAIE, ATENC X D08 & AZBRA - AN Z2 B IE O W 5 21T > T\ D, ATEIRY R8s & LTI,
FITBHM~DL Y - 7~ (BE) B0, BENGIEAENE TOZNICHET 2 ®mEITE
WV, 62, R ZREIE 7 v 2 L LTRIS EMEHENR D 1 DOBIR T2 A4 70 % & TREIDR
UTChR A 2 RBIPEZRT Z & (TRZ AL IES) TOMER, =5 ) A LT 5 AR
25 5 B AnF OB X2 REESOFH ZHHT 2, &EIC, RIICELREAH) T, HE
IR & 7o TR BB LAY O REUEE OZEIZOWTHRNT 5, ¥, 2 OFLHIRH
BT A%, &IT Contemporary Evolution & HEREILCRLAEE > TWAWFZESE & 7
S TW5,

3. 1. MEVEAMICRITAKER EFOAHES

WEEAIZIE, WERAEO 7 7 O X 9 ICH S ORI CIRIEZ & 2 #FHICROBEE L FFOH
IMEEN) (Endotherm) &, FIESCTE - 7 =72 & O WS & OBEFHEEN O X 5 ITRIRIT 44
DIREEACITATA, ZDIREICA - T2 AFN) - [TEIRIRE 51T 5 SMREEY (Ectotherm) & A3
B, RNONRHZ i HBEREITREIC LV ZOEEEZ R SN THNEO T, KIRE—ED
MBI PRD Z & DOHIKR D NIRMEBEIMIT L 0 L L7 REHERE L FF> 2 L3tk D, 20— TR
B oBICHERF T D720 % ORI X =%l 0 WERH D, WIHMBIEEM IZIRR 2 M 5 =
X =BTV 0D, RIESCEIRSG ORE COEENIIRE <HIRBEhD (PR 2020), ¥
FEAEMN TS R ORI £ 70 & 2 BRI IEEARIZII KR CTAEIE LT D | BRIREREEIZ T ~iuE
BREGIREE DAL EF X D,


https://ja.wikipedia.org/w/index.php?title=Ectotherm&action=edit&redlink=1
https://ja.wikipedia.org/w/index.php?title=Endotherm&action=edit&redlink=1

IPCCAR 5 (Portner, et al. 2014) TIX ML DM TN O FLEM) £ T, AH 28 ATRE 7o I i
EEELOTVDLD, BAEOBIEIIAY ORI L > TRE SRR | AL L TOMRHI D EHE
TEEYAZINRRELRDIHE > TAEFHRDIREOENEL R AEAARINTHSD (1
4), T, IREER T2 ERENHEZ 5 2 LT, WIS 2 IS EE 2 Solic ko T D
AIREMEZ R T 5, M TOMRT vt ADEE, FHROERT o v L OMERFEER, L rEsE
Ko I by FU 7 OEEEKLL ETH % (Portner, 2002),

B TELMOE, ML A0°CHHE TRIRRR & 72 508, ZAUIEREK O EIRE & 1%
FELW, —F, IR O TR, &mﬁf@mf DD TRBET 122°CO R THAEF HK
b D HAFIET D (Takai, etal. 2008) . W, MBIND & L /X7 B 70 @571 O SLIRREE K 60°C
AT LB AR D L SIVTWAR, THEA~DF L/ BORZEMITT I Bk oM A AR
%ﬁ%%ﬁéo:h%@ﬂ%ﬂ%ii4ﬁxﬁA%ﬁé7w#:/ AT AT
BEHESLT LT, FAEKEORELEZHNTWD, E5IT, HAESEONAEEEDORY )5
TEEAEME~DMEEZFF> LB X2 BN TWD  (Vieille & Zeikus, 2001) o

Domain  Cell number  Group Tolerance range for growth

~

. Plants
Multicellular )
Animals

Fungi

Thermal window
(L1

Eukarya < Minimal temp Maximal temp

Microalgae
Unicellular < Ciliata Sea surface

temperature (SST)
Amoeba

Flagellata

Mean SST = 17°C
—————— Maximum SST = 41°C
Purple Bacteria

—]
‘I
|

Increasing complexity?
r

Cyanobacteria
Bacteria < Unicellular < Flavobacteria

Gram-+ Bacteria

Thermotogales

. Crenarchaeota
Archaea — Unicellular
Euryarchaeota

20 30 40 5 6 70 8 9 100 110 120 130
Temperature (°C)

M4 AWOZR AL RMWET DT T U7 03 b B E T O mEikk it ol #EpH

T 2 TIHRHI O BMAIZBATHE OIS F AR LTV D LRE L, ZORERIET A X2 RETEER, S HICE
MHEE T L7e & B 25, MEICBWTIE Thermotogalesth™MAH b i H CIE Y Ik b miRICTN X 5 (kX
IPCCAR4, 2014%ZMDOZ L)

SMRMEEN) O DX D A OISE T — AN KIBIZ R LTz £ 912, 32D BRI 7T 5 FN
Hisk, ZXZThermal performance curve (TPC) & IFEA CUN% (Schulte, 2015), 55 1B O IE M
TIHRED ER L IR ONRT 4 —< 0 AT o< 0 EH L, ZO%E2EMED 722 2 IR ER
ROE—27IZEL, IADREREE—ET 5 (Topt) » ZOBRDFIRTIINT +—~ U AT
%ﬁﬂﬁ?f%@ﬁ*%%?%éo:@iﬁ&ﬂy—yi&yﬂ7®ﬁﬁ TR, PR, Rk
Rele EORI2 DEMRH O L~V CTHIBIZ LD FA DR, BB IE ) O A sl 3 5 fH
e, B< Arrhenius@fﬁ“(“*ﬁuéﬂé*ﬂiﬁﬁgiﬁﬂ/ﬂ THWINTEREEE X NS, —H T, F3
BBE DR R T IFArrhenius OFTITFAT 5 Z L ITHRTZ X7 OEM R EnEx b
Do LU, 2237 OZEMIFTA0 - 50CH B E 5535 < DEW TOHIBME~DZ#h ELE D
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IR VIRVEETH D Z Lo TV A,

5 SMEEMOREICKTT DT 4 —~ 2 ADT

—7 (TPC)  (Schulte,2015)

TPCIIAEM T ZADREICHT 2 EEE LD bDTH
5, TIZTEERAL FRIZEI AT —< A EROA
B, LV Topt & FNMEET DIEEIRTH D,

Thermal
breadth

Rate of performance

Temperature (°C)

SMEPEEI Y Z D L 5 IR EEICK T 2I0E 2RO 2 L AR & L TR B <A
HNTNDDIE, KA Y OPortner HAMER L7z [MEEOMEF v/ 0T 4 —I2 X 2 EiRmED
fBAL]  (oxygen and capacity limited thermal tolerance) | (OCLTT) T& % (Portner &
Knust, 2007: Portner, 2010) ., [X 6 1ZZ D& TH 523, EORIIAEDOXIET 2 iR O
fHOME EIRE & DR EZ R L TWD, HE EFICK > THMEOFEIIRE 20 KRR OIEE
BB TP & IR ANE E B ETp O CHk~OBE RSN R S b, —J7, mIRANEERETp %
WE D L FTEIIK L CIBREMEAHEL, 220 o OBKIR#HCE —Fa v 7 2 U
I DA EDRR 2 I TR ARAE LD Z LD, SIOICREN EAT 5 & DIROBERED HE
R 2o RiE (Td: M6) IZEDEEX D, ok, KIEMOEERMET X VIREN TR
Lo ERMITOINE LB L5 BRI E L2 EELTWD, £, TORIIFRI7ZRK
WONRT o —~ V ADRERTFE R L, K5 ERE LTS, 2B, WPEAHOT T, AREITR
BEIC X DRI 7RATPAERRRE 2 KWV TV DR LN TN D DT, HIRFEO = 3L —Hlifs o1
DIk ZRWE DR H D (Somero, 2012),

Z OEFKIARE OB OME &R & OBIfRIZ, FEBRINICKIG & T 284 > TRD 2 A HK
%o BlZIEATITIRA D B 5 KO CHEIES & fe RIC SETRE LKA TV HIE GEREGH)
L OMFHEFOREMRGFZNET D2 LT, Z0EE L TAHRBIRE OMOME 2155 05 H
. —BEICIERSD L H I —7 RO L 70D (R, 2022) . —J5, filx OEMIZIE T D
Tp, Te, TAIZHARSNIMEOT T, H 2 IZZFEINT LV (seasonal acclimatization) i AJIZZS
6952 EnHkD, ZONE LRSI L ko= TRAT5, 20 X 5 ICOCLTTR T
WX, AMEEEM D EIE COIRERR I ET 2 DIXEIE T COMBEANDO I ha2 Y7 TOZ RV
F—DOMFEORE L 2 & BhET 2 DIBHEEEDIR T2 ETHH & X TWD (Portner & Farrell,
2008),

[PCCRHAM T D Z ORFITT 2 sl L D% D IPCCHEZETH RELL FEDb->TED
T EIRA b UARIET Tl ABRBBIEL A LIEEHA P L ADOKA LEERE LT, Z
DEEFRFE/AA N L AN HEN TS (IPCCARG, Cooley, et al. 2022), L L., &L, =
DIGROFEIETH HRFEMEREITI 2> N TOEFAEEREZ BT K2R BROEET
DN, BEIZE > TEDATPEMRDENRN BRI D720, %9 L HATPEAD BUVEIE & 1372 572
W DR S D (Zukiene, et al. 2010; Schulte, 2015; Michaelsen, et al. 2021) , Ziud 7 7 b 93
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ATPAERRIRIE ISR O I b= R U TR AR > TBEIT 2R T LE 5 2 &Ik 225,
ZDOATPAERGHIRICERT 27 1 F o U — 7 RS AR O Z LR OT = bRBE i
T\ % (Hilton, et al. 2010; Iftikar & Hickey, 2013) , = OfER, EEN LH 351223 TATPA R
BED ZEORVEBRFRHEEOEIR A NS ELMER LD,

Loss of performance

Acclimation in functional capacity

o P T
5 | A Energy consumers /
& ‘ | A mitochondrial functions
o
3 ..
=) Anaerobiosis 1 7. | Acclimation in protection
c g Te +HIF-1  Anaerobic capacity T
B i \ | Hypoxaemia l —> 0, supply pathways T
% | . | | Metabolic depression
= o b ) ==
~ D enaturation
g= T, N 7 — .
g d | Hypoxia, CO, | Tq Acclimation in repair
Pl g <1 —_—
3 0 I l + HSP, + antioxidants
B
——
Optimum

Fitness measures:
growth, specific dynamic
action (SDA), exercise,
behaviour, immune
capacity, reproduction

\ .
\Progressive

\ time limitation of

\ thermal tolerance
\

Rate of aerobic performance

Temperature

K6 HOLEWE, TOTA 7 AT —VERIMEARECBIT S, BELEZTOMB v T 4 —
VPR S V2L & . Z OFERA U 2RO ST T L (Portner, 2002; Portner & Knust, 2007
K0 . KOFAIIAZS0H,

F72, EREO OCTLL AGFIZEE L Ttz 2> CTh 72 TBMEOEBA P L ADER EEZ S
L —OEISEEOREEICONTOI LB RTEDEZAGELR TN tT51Ea
—imXbdHD (Orsted,etal. 2022) , 4 HIFSMNREEIMIC T 2 BEATOAREEZHIIT 572120
OGBSI TW DA, ZD1F & A E1d Schmidt-Nielsen(1997) DA EIZ L - THR S
iz 5 DOEMFEN T AD ) bLO—DOUELBESITLZ ENTEL ERRITND, D5
SOTatALIE ()X EOEM, (1) BREROBAREN A, (i) BEIEERE. (v)H
HATHEAFT 2 RSO3 5 R ZRRER R, 7213 (W IEOERERETH D, TR HIDOD

MEABRE SR 1, FHALICHRIAY 722 & O TIEZR < L WL DD AEB PRI RE R 2N — R & 72> T
B TOREZREAIT DEVIRERZMEZ 5 ST riRERSH & LT D,

PlboX oz, ARNRERE L CEBEMIGSMEOIMREMICE L TRERFINE 2o T
52 EIEHLNTH LN, EOEINEEICE L QOIARARTR S L Lo Iclbh b, i,
AAEEN TR VAR U T e 3R % i85 CRE 3 2 R ORI IR TR 35, —JF. KR
HIZIFAKF O 30 15 OEEFE N & 0 IFKN AW L > TUTAFIRERE TH 5, #boiafe c4E
PIIAKFANE D D EAETRICE S 7223, B EATEASOBITIZNE, Fo<H LW ALY X7
L (i, BB OE(EBRMBEL LD ZENEN-Tz, L, 25 OB TOELR#ESIZS
WTOT A EHE Y HAMETIIZRVY (Porter, etal. 2017) , 7238, #(bE OREH T, EfEC
DETE LTAKIR T CO+aRBEMRBICL > T, O KATIIIA/ner bt BE LD
BREZ K> TS Z EAMbNTERY , MEMAEHEAME T LIEWEEZ S 51255 < Lz wTREdER
» 5 (Beers & Sidell, 2011)



3.2. LV -v7 b (BE) ZLHES

WHEAEMIIZEN TN OAERICHE L7 RERPAZ R o TV D23, SR BREEN 2 O EH#iPH 2 8
ZI2A. WNEAH THLRESBM T T 7 N EBBIIOSH 28O, DTV TE
%ﬁLmiﬁﬁm%A@vyy-y7b(%@)T&é(mammnmmyammm) Lol
Z OBERE & HEET D 72 OIITE N ENITHHEIC BT 2 RERFN 72 Wi DT — X 3 IE T
B . ZFOHBIIIMGFOMLE S LT — 2 X— A& VERT 5 MEN H 5, Poloczanska, et al. (2016)
TEDORBARERITI T 2 RUEEE OFEZ 72 230 LLEDOGR )6, 1900 D HEH] 240
THHERIEES A X7 b T —Z =2 MCID) Z#1Erk L. Ei & B L CHEEAEmREOBE), Bl
TRV =/ v U—2{bZHE L T\ 5, IPCC/SROCC (Bindoff, et al. 2019) Ti, _LFioim%
SIHLTRBARRICBIT L LY -7 FOBIELE O K7 KIROZE) S AHBE L TR Y |
1950 4EfRLARE T 10 4F %472 0 51. 5433, 3km DA OZAL (FEPAF L, b b - m FEREET) &
LCW5S, —H MFEICAERTAEAE DL Y27 FONWHEE X 10 452721 29. 0+ 15. 5km
ThY, RBERRROBEICILARD LENBREOHETH D,

B EAEYOBENCE L CUXbBSERFE TOT Y IOMBFH~OBENHE SN T D (X
7 : Yamano, et al. 2011) . ZAUZ ZAVTEN - EREVEIR O T  THEA R T A L 70D 2 DD
W2 = (Acropora) %50 DBENRFEO Y > TOILT R ~OBENT 1930 D HIEE > Tz,
F 7o, BEGEHE X 14kn/FIC b2 LMD EAES L0 B0, ZHUSIZE# e E OO E L b
HEEZOND, BTRARDEHTOMPDOBENCLL~D &, Yo TD LD RIEAEAEYOBEH
BRIV, Z2OHBO—2 & LTE CTOEEEFELZED SO THAEFLD & 20 Clik AT
ETDHHONRENENRET HND, KR EFICK L TBEITHZ & THAT 50130 1 DT,
RECT IR L0l EBIRITZEORNTH A S, B, T L ) IRREZWIEAEYIX gene flow
DREWVERBLLTND

EXpandedq species

Acropora hyacinthus
18,5
Tsushima I/I ] LT 11 |T tey ma
Iki
Goto K shimoto-Shirahamz
Amakusag Tosashimizu=Ohtsuki
Tokara-Tanegashima Tokara-Tanegashima

40°N Lok of corat Acropora muricata
d !mhu‘mr 14 a
3 4

e
Tsushima | [ T [ Jrateyama
Iki [=0

Goto|

Amakusa

Tokara-Tanegashima [ /]

Acropora soll!aryens:s

2
e
o ara-Tanegashima
Ak * Ky o=
olo ] g . irahama (15.
a
sul
o i L/
30°N [T 7 Ay Tsushima ". Tal y ma
ki
lokara Go(lh Kushimoto-Shirahama
Amakus; Tosashimizu=-Ohtsuki

Pacific Ocean

Pavona decussaia

Tsushima -.-- eyama
i ZEn
Goto Kushimoto-Shirahama
Amakus Tosashimizu-Ohtsuki

gegs g
1208 130°€ 140° 150°E 822 s8£2¢
mmmmmmmm

East China Sea regions ~ Pacific regions

X7 HARBDHEHRIZIB T 5 &EMEY o TEOMmIT [ ~DE) (Yamano, et al. 2011) , A3

2B KR EF &R LR &, BT M~OBE 2 rd, ARNE G HA~O193 140 H2010FI0 B 1T 5%

Yo AREOBEN T, BRI OEIL. IEEY7S 1 T00Kni & &5 A Bk 0B IRIE 0 AR T 7Km/ 10
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EDI~DOBEITH Y | A BIEONE OB TESE TIZ99Kn/ 1054 TRE L 7=,

Pzt TR LIS X D B OMIT 6 5 PR 72 BB BhdE 130. 61£0. 24 km/year & S
THY (Parmesan & Yohe, 2003) . ¥HEL VD L —AHEWBELEE CTH D, B COEYBEN
FEWVERR & Uik, FRIBEREE D A %1 e W A {biZ £ 2 BRESCEIRRFORNG O AL Ekkx 7o 8
KR3EZ B TS (Lenoir, etal. 2020) , £72, [ b EWFFEDOEMMREZ BT 5 & | WEEAY
FEIZ— A, 20O ERIBEICITWVEREEICARE L TV DEIERR 0 SN ERINTEY
ZAUIERE BAE & L U CIRBE I B L 72 R FT ARG OB G 030 e D mnFER EEEHTH S

(Pinsky, et al. 2019)

FJEERER TOEER R A & B T- B O S 22 R B B 13— E DR IC A D A8, *ﬁ?@%
DAYHBL LR RSB TR Lo CHO NI Lo TH R 2 L b TH D, HlxiE, B
W77 v N oA & TCTREAIC X o T W EEPHRB B S ik 4TV 5 (Pinsky, et al. 2013;
Poloczanska, et al. 2016), H & LR VEFE T3l K60FE R oM 77 > 7 b itdkat (CPR) DT —
ENBHDI, ZOMNINS DD T N—T DA T VHIXI04E Y 72 V) Fr K 232km oD 38 B TRk 1 i
RKLTWHD EWIFEHLAE S TUWD (Chivers, etal. 2017), F72., BEL AR T ORI T
OARIIE, [UEEEOBE (FRGEEENERE) ICEHEICBET 2B AR > Tk, et
FREICEEREE O AT, BAEMZRIBERL L 0 b LA HREE Th 2B HERAMOEENIK
XL EINTWD (Chivers, etal. 2017), LU, &@KE L CHRD RSN/ A
DUFLEEMBEE DO RISy DZAIT, HEKIEOZEICHT 5 FREN DG E —FT 5,

S HIZUA R L2 K9 2BUHHIC b L 2 £ BIRO BB OB & ik, KR EA-Cnx TifEE
DIKEESR & AL OFE EAER  (Sampaio, et al. 2021) @ X 9 7 ERIBBEAL DM O ER N K & < FH 5
LTW5EEBEZXLNDN, RIRFICHEIRIC L > TEILLTO L 9 RIEKEIER O AE/ERIC L - T
TEIND EEZHIDH (Poloczanska, etal. 2016), ZALHDEK & 1E, a) Wi/ 2 L HEEHY
723U 7 (Chapman, et al. 2021; Fuchs, et al. 2020; Choo, et al. 2021) . b) fH7¢ & o B A Bk O F]H
"HEME (Alabia, et al. 2020) , (c) KiEZ S TeHBIAINE (Mardones, et al. 2021) 72 ETHDH, =
D XD, VOB BB O E X, EEROREN - IEXENERIZEES L, 20
FEALE U CHEEREENICB T 2 ERMN B8 2 L - 5 riEER H 5, KR EFZ2ETELS
BENZ X D AEMREE DISE DRV I1X, A% INEARBRO MR BRmmR 25 S E 2 L.
ZTORER LD BVRBEMEOAEWI AL RIFTZ L E 2515 (Chivers, etal. 2017),

AW ENC BT B A B 7o 7 — 2 AL EER O HEEE DAL O KPR TELE TIEZ V3,
— IR ARHE FE IR CI3MRed T2 L < (Dornelas, et al. 2018) . = 0 Z & HMEGHREE Hils T oo A Wy i PRS2
W72y 7 RO &2 DORBIL~OFHEIZ X T A EHEEZ K T ST 5, iE-T, 4%, v
ST EINFERR TOBE L S OEEERK TCOT -4 EENEETH D, B, L~k
I THAEL D, R TORMRE COFERMEETH D a2 7 OMEITREIZ XV RS B
%2 L TBEINAL D MHIZITRCP2.6 DT U A THAL KEFEDORERZED = 7 Offf#lix
Z OFIRMAEEIR DL RIZ LV 2050 4E2D 2100 £E12<40 km b ~BET 5 LTI,
RCP8.5 (Z722 & 2100 4R (ZITHFEIZ K > T 126km, 406km & 236 OBENN N D KREL D L&
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Z HILTUW5 (Wilson, et al. 2019)

3. BT A3RE~DIER (Acclimation)

AT BB R LABRREI 2SS CTH DIEIE (Acclimation) &, BEKSCERN CTOBEG
T DEAtZ A D Genetic Adaptation® —-DA3, B#E)E F S ITEINREIC & FR< &AW DREZE
~OREFEMNRIGETH D, ZOZOOEYISEDEBEEDNT VAL, FUBEAEMBEICT LT
BB ZITIGE LB R B DN A @ < £ TORM, T72bbiHRoRE &7 EogRan
EHEIZBIRT D (Somero, 2010) o DA VA, M, HAHERG AR SOF A OBV R HEED )
7281k, REREFZELENHRBEEN 22 Vo T, iE 72 S0k L ToREITkt
T HREEE O RPN EOBEREHIIE NS TH D, —J7, FEmORVIMEEO BEHEEY) 72
T, miE DAcelimationDEESN O L EELREW L F - TL 5,

EFIC LUTNESIC X 2 BRHIPE O EMIL, 1 SOBGEFXA 7D & TREIZIS U THEX
REBE T 2 AR DS (ZNERBEELIES) Tho, BEMRERE R 20
EEROHRNTOIGETH Y, % ITEH D OEEMOEOHIM AL, ZORICHRaN THiz
RBR T OHBF T BRI ENAE T TS, 7k, BEIZIR 7= MRS T O EZE LIz k)
THNRT =~ ADRERZ TR 6 IZBWT, miEAL, KR LTS 7 b2 %
RLTHWDN ZNBNEISDOIEZ R L TWD,

R KT 2 BT RE 7] O 00 SEERI 2o HE BRI BRI e RS 23 d B, SEEREE Tk
LY & AR LT B DS TRRAEMOERE 22 - WAMFREITV, MG O FHIRA~DIS
BaRBDON—HIRFETH D, £z, EWOBREEITHT 2ISEOBREIIE, BOA
RMMEOG, B—bYa v 7 Z R e EOELRNRIGE, & DB G TR E TR
i UThR 2 RFEEE DS H W BTN D (Peck, et al. 2014)

Imw%amam%i WEAFRR SC & 406 FEOSMEMEENY) (Pl 318 #, Vi 88 Fil « Y Tl
HAMIIE L) | ﬁémvmﬁﬁﬁﬁ (upper thermal limit : CTmax) DT — & % fii-> T, 2EK
L UL CHIERIRIE(KIC K 0 5284 51T 2 Bl & R O SMEMEEh ) 2 ik L, IR kic X 2 204
ﬁ@)xﬁ%ﬂﬁbt(IS)o@@%ﬁK%wT IRR EH- ORI R 5N EETH Y |
I TCIHAEMITIRIEN R b E < oo e, ZNERET 2 EN R DB OTFER S D S RE L
7o $E- T, O TIIBAEMITE T D Tnax & Z DOAEWHFIH HR 5 & b AR 2 MR B IR
LR HEVHOEMORERIE L O THDLERER (TM) Z2HE L TW5, £9, ALk
DITEBBRIZITIT D imKURIT, Bk Tl A RRIZ W TH B CILE < dEE 2 B iR (b
. FERE 20~35 ) THLIOICH L, MHE T B BWIcHHZ L THD (K8, ab), %
7o, MR OIR 7 ik 2 FR< & Bl T2 < OEWO Tmax NEH HHIZS D SR TO
K% Ao TR Y ERREICH 2 FE2RT, TO—JT, BEECIIKIROZEN AR & 1% 10C
P bd D ARORBINGOFENPRD TEETHD Z EPRINTND, WHETIEEERO X 9 7R
%sz%Oﬂ“f?b)ﬁb\t&) RESINTHEZ D TRWEG L OKIRIZT—8T 525, ZOfEIT Tnax £V
BIRIUELS o T D, LinL, BMECEMEE CIEZ0ENRD R 2o TND, 61, K
wcimmi» BT DREEROKIR « KR B & & A 7RI ORI - WHs AW O EBRRNRL% D%
11



AR OE T %, RIBKIC & 0 A ORI 725 28, WEE + Wik 2 & SR oo 1%
7530 ORI CIIEEHE 2 i B IE ARV NS5

60 - ° Tn, exposed G

50 © T, protected

404

8
%0l

a0
W G,y O
3 o 0

— Terrestrial

Marine

Temperature (°C)
o

- Future

104 Terrestrial non-amphibian

Terrestrial amphibian
Marine sedentary

X o p m

Marine mobile

Thermal safety margin
in favourable microclimates (°C)

Temperature (°C) o

T
-50 0 50
Latitude (°N) Latitude (°N)

B8 a,b: [k (a) - MK CO) DRI RO SR « AR AT KT T D4ME A O A B 70 i (Pinsky,
et al. (2019) = Z Tidke - WETOREMOBMNED Fei il (Tmax, B) , AFHL CORMME (AE, Texp,
), HE& (Tprote : AL ¥) THEICH TN

X 8c: FEERID 2100 FI2F 1T 550 + mmkﬂ&&47%®%W W AR D AR BRANIA(L Ol
FEMROHEE BB X 0 MRS ORI < 70 B A5, M - Bl & BRI OBIAITZS D &9, HHk T3
AN bR,

Fak, IR COMIME 2 EOEEBOW UWBRETIE, EEOBREERARRIN - 22 A 7
—w#%kbﬁ#%ﬁﬁ@%#é%ﬁ%b\::?i@ﬁé%@%ﬁ-%@%% b3 R RPAS - (VED]
IRIE S D T & A M E O BRI A 7 34 U T D (Boyd, et al. 2016 ; Li, etal. 2018),
ZOXRIRBEGOFEFE LT, WROEMERIHEDREO N = DR R b L 2153 D)
Bt LT-2ER3H 5 (X 9 : Somero,2010) , ZAUiE, 7 A UMK FELEF ORI DL T, 1E
FEaHEDR L DZEBENGEE (Petrolisthes) D =% B DAL L=, B£HD 50% BT 5
LD50 % EERIZTH R TEDENE AT b DO TH D, KA OFRERIT, HEDIRNTT | FoRIUARE
TIE EBHORENENTH LDS0 DKIED <> THY, ZIUIBESNIME R THD, 7ok, X9
@%ﬂb%ﬂiﬁ%ﬁ@@%ﬁ@@%ﬁbrw@—iﬁEaniﬁmﬁotﬁ:®Uﬁommﬁ&
IO A =OEFWTICB T DK EDOBERE FLIb O T AR C iR FICER L7z
@#7%?@@:%&Tﬂ%ﬁ:;@%ﬁﬁ¢ V7 FTEDLEBRDIRNT &2 ZDOMITRLT
WD EMER SN D, DHEREDS SR T CRIEICHT 5 DA LD50 D EERFINTH 505, Z O
RIXEIRIZHE IS U 72 Bk C o fE I, é%&émmk ZXT DR Z LWVATREMEZ 7R LTV B,
ZOX O, IR, pH, pC02, Y. HEHEMIHAORFRIMEZ L LRI AR LT 2 E KR

X, WU EBTDRMICE DO HARPUC L D | BT 7eis & BREA b L A0t %
%@f:ﬁf'ﬁ@iﬁ&)é EFZ 5TV % (Hong & Shurin, 2015),

DX D RRBFE O EEIEIIRGEEINC L DIEE L U— A0k Y EMPREO AL
BACIZHRHAL S D72 OIS TH D & LI LIERE SN D, LavL, Tk TOMBEWEN
WIS TH D & DIEIT L 1D ST, 25 DEMIC L HMEWED TR 222k, Z DAY
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DOFTZRBRE T COMISELAZ GO E I DORFHISHE V2 EN TV RNE S THD (Armold,
etal. 2019) .

42 A 42

40 Y 40
38 38
36 36

34 34
32 32

LTs0 (°C)

304 O calfomia 30
5 @ chie
8 ¥/ N. Gulf of California 28
26 '1 Panama 26 : ] i i
High Middle Low 10 15 20 25 30 35 40 45
Vertical position Maximal habitat temperature (°C)

X 9 A.FL7pDkeE OWE D 72 2 E O S HER A R T A RS (Petrolisthes) DH=IZF1F5 LD50 T
H7- SRS O BUR, B AL ENOBE CON=0 LD50 LFDOBEICBIT A5 E AR LEDRE,

OF VI E 2 BT 2 REUEE O "M TR T AUEENS & IEFEXRR VWO T, ZOHSET
DRFENLE L DEZ TH D, S 5HIZ, Merila & Hendry (2014) 3R BEE O /[ ¥14EIC K 2 #5112
BIL TIEZ < OBEDFEST 2030, ZRHPARLDORE %T@ﬁmf%éﬂ_owfi LT3
DDOENLDREDBVETHHE LTS, F0 1o, ERMICAELEERBEEOEN., &
GFOUBETE LD TRWELIET 2 - L NES TRV L. o BRI, LU BN
B TH LM EIPITONT, TNEFHRAT LIV IIEELTLES ZEBZVE, =200
KBNS DS i DG, MOFREMED & 5 BRI S>W TR L2z gkBR+ 2 F
X B Gh VT 5 TNV NWETH S, “OL 50, WEAYOBEERESICE LTIt £7°%< 0
BNHDHE L TWDAIIEE B,

uﬁﬁﬂbkiﬁﬁﬂﬁﬁﬁiém%@@ﬁ(MWMMMJ%&WMmm&dﬂMW)%ﬁi
BT HRE T CAEZER D TCOIIIRET CRA T 2 BISER A ) IS PNNE L 72 D

(memmw) Z ORI, BB EDET VY TOWFILIFE &ﬁotﬂ£¢m%®ﬁﬁ
ZHB % -3 T 5 Transgenerational plasticity (TGP) EMEENABMEZHEINT 5, ZHiZ
T BT L EFHIN D BIn T OFBLZ T DA BE S 5 2 & 0353 7r > TS (Eirin-Lopezl
& Putnam, 2019) .

IPCCARG6(Cooley, etal. 2022) TlL, WEHEAY) O ERRMPEIZ I TAETE S OWEFEIC % B 85 8 JEE
INZE DRI BE 5 2 5N EB L O 2 72 BRERED [+ Y —ﬁ—/\—aﬁ% DR
DAL, BARERKCEUREER OMPE B 2 5 2 DR8N H 5 2 & 25 L T\ 5 (Veilleux, et al.
2015; Balogh & Byrne, 2020) . X 10 (X, V> TEICHED AR AL A BOANR,f == 1 I A
(Acanthochromis polyacanthus) % i~ T, FOMRDRD F1, F2 AT, =2 b r—/LT% L TK
BE B CHRELESGEE, 22T B CHEE LESAETO (K 10a), FRFRFEREEZ &R ~0DiHE
JEOFREEL LCHEE L= D TH D (Veilleux, etal. 2015) , F2 X TOEERFEIFRAEIL, F2 7200 &
B2 Tldar be— L X0 K F LR, FILF2 Clfbsd7-faTidar ha— &
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DEMICEL 720, HREZBZZIESHAEC TV AEINRBENTWS (X 10b), B DRI

% .7 transcriptomes D LLEE TlX, Z DNEMIIZFAMI 22 RE O miEIE(LIZ B 59 5 % < DiEfs

TG L TR, 20X RZBITBIE T O ORS R, BRFE OMHOT RV T — DL EMR
WZR3 % DNA D A F /UL THE T TV D EN D -T2 (Taewoo, et al. 2018)

400

; 1 350
300

‘ 250
@ 150

OOC"\SC‘3OC‘WSC‘30C
Control Developmental
n=15 n=6 n=7 n=6 n=10

NAS (mg0, kg h 1)

LY
b

Control Developmental Transgenerational

X 10 Yo TREDO I BT DIREIT 5 A 2 7B
K OFRIIIA T A S B OZFE(Veilleux, et al. 2015)

ZD XD 7 Z oA AR A 72 FIBEIC L DS, WEETCIEAE, CE, RIEE. v
AR EICAONDD, —FH T, ZOBGIIRRENTH Y REZLOFHELRKE ST L - TIER

BRI N RIS L2 il 2 5| 2 2 3Rl BEMER & 5 & S 415 (Byrne, et al. 2020), Z OB/

P L HHARE B X 7= RBUBE O A OREER, BREZBICHT 2 HELE (L EO X ) ITHEY
DNTWVDLNEELITSE D LBRWERZY, miEDOWESH 20 RE Lo BV =T 0 7 A
D L B = —3a L (Eirin-Lopez] & Putnam, 2019) CHIRD L 5 IZE LTV D,

[BIfE. WEEBRE COTE Y 2 XT 4 7 ADFRIC fé%<®$ G772 v v 7 H ffRd 5 HE
BIIESTWDLR, ZOPTYH, TEYV X7 4 v 7 RIGROBIRITEAN LG A TEE 5 <&
LEETHY, Rbi#EmOM LD 2 LITHEWRY, £z, ZORE, Fifik, REB~DLE
BN T DA D= AR ONTEL OFENE T TN TS, b LEBEBEEOZE Y =T ¢
> 7 IR E LR LORIEICH D & T, BREIRIZNWS DO 8RR 5 % A 7 OBEMED
BH (=0 4 VINERL TV ER) | W%#éT B DD L VO RMBAEL, KVIA
F2R BB OBEENSMEE L 72 5 b A7\ (Jablonka & Lamb, 2002) |

3.4. BIEWERZMHL S BIG

IPCCARG6(Cooley, et al.2022) T, RAREENIAEMIZIT 2 HREIROFHERJFEN /) TH Y | L
f. AGH, AR E 0)@/%&*& BROME a1 X RS, AR CORE, HDHWILH
RERBED BRI SR EE R Z 2 7255 2 E 2T %  (Pauls, et al. 2013; Merild &
Hendry, 2014) , L2 L. %Lumtio_@ﬁé%#wﬁwﬁ Tk U CEARA 72 T L
TITITIE, [RIBEEFHOKRE & & Z2OEEE &5 9 A7 ER &I A CKEMFEE O RO AR
RO SROMEN TOBIBHI 7R kM2 5 BilFISRME & 72 2 IR < Fn b T D (Mitchell-
Olds, et al. 2007;Lohbeck, et al. 2012),

W OBUGIZ 30T 5 A WREE D22 - RERIAN 72080 OFREE 2 IEMEICRE 02 2 &3 L < |
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T RO MR BT DB EL 2T 5 ETRERBIKE o TWD, £z, KU
LENKRET 2 EM OB 28 Tk, BFMOSMIAEY TOEIC K 285 O EIE5A
CHE | ERA RS ECICBT DR IR, MRS T s b D KD 2 N TR 7R
OB L TR . HREMIET HIERDOFT v v THRRE, M7 77 hrD Xk
5 7o/ NRCHEA OWFE AL, SURICHR L, REREFOPIZEWBIRNEREZFFO L F 9 FF
BRHLD, INBMMMOEFEMEDIZHLEENL T 2008 9 DTN BRI D T H(Collins, et al.
2020) ,

MO 77 7 R TR, EREANTOEMIZEMTOND X512k, Zhvb
DAEMRERI TR ' O S 2 i U 7 BREEA I E R OWNICHEIS TE 5 Z LRI T
V% (Bach,etal. 2018) , X117 v— A Lizitin~>" 7 > 7 + o OE:#E: (Thalassiosira
pseudonana) Zffi-> T, 300HEACE TRk E L BN LB L 7KIRZEE 2 5 2 7256 L &ik
WREZMEFE L7236 0, ERBO SIRMHECBET 2 RBBE OGN E D b nElizcbDTh D
(Schaum, et al. 2018) , KI1UIRT X 91T, EEEEMZ D TEWO32°C O EIRIZEE L7 &4
&L PREDOFIE TH 526°C THERF L7254, 22, 32 COMZ%Z, 3—4{A TR A S8 5SS
TIFRERDRE S g o7z, 32 CTOREIRETZE TITRIL00HARE TOMD TEWEGFII X L,
FSE L U26CEEHZNLSN TIHIZIFIETI00MMRIE L (KL, a) , £/, 2> hr—L
[ EOFRESM T U E O REIR X LR LA, BIRORT g —~ U ZIFSHMEN
b RWIZ LR ginole (K11, b) o ZOHEE (Tpseudonana) THR.LIVIZ X 5 2l it
2B 7RG BT, B % OEEREE DTR 0. A RO & 5 - 7o E e D 2 b &
o TRV, FCERFME TCOREFAROM ERIZ-E2 Y LTS (K12), 2D &5 ek
BB OZEbIX, G, BMEA b L A~DISE, BILETOMER LICEb 2 REFE DA
WL Z o TAELUTEY . MRV KRERS ) AERTORESKENEL TN 2 EHRS
A7z (Schaum, etal. 2018) . F£7-. &7/ AMNTIC KRR DEEESFCERIRENEHND
70 LOWES BN o7, ORI, MIEEERICI T 2 SR OE, FrIZZEE LT
LB T TOMELE LT, BIiERICEDRBEEOLEZ M4 WIS E N ERMTEL 5]
HREMES R ST,

FRLO K5 e OB O B T OIS 7 7' R, — T CRRIZERMEO S0
BERERY - (LRI B L— RA T OFEEIC L > T, WA onzn By, fila=zds
Z L 23% % (Aranguren-Gassis, et al. 2019; Walworth, et al. 2020) , | X |ZVFHEEERE (Chaetoceros
simplex) Tl mRMME & ERZREOHMOMOMEER F L — RA TR HLFEN 51> TH
0. ZADERGIROFIFTOEIRSDOHEIED 9 F ATHRWRK L 72> TS (Aranguren-
Gassis, et al. 2019) .

¥, MEFEICE L TOEROREMOMEN - AR RT 7o —F & LTL, Kbz &M
Bide (25%F[17C60, 000t A fikfitse) L CE O IGERE | FrICHBlO RBPIIXT T 51855
TWtgEn & % (Lenski, 2017) o Z ORMNZZEMNICIAFHEK D RR D = =2 7 A T OEM B FEA
L. EH-2kRBRZFIHTE DD BIIRERTHR S0 8 A O OmFE % FE5R
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HUZREIT 9% Z & AR D FHEIZ > TRTW 5,

a - k
20 ] b Selection ancestor = 22426 32 +FS
15 environment
1
1.0 s .
. G .
; T>~
> < -1
s 2
= @
g g
e <
= £
E g
< ( 8
G £
-3
Fluctuations (FS) |
15
1.0 :
0.5 A" 4
0.0

15 20 25 30 35 40
10 20 30 40 50 60 70 Assay temperature (°C)
Week of experiment

11 EE# (Thalassiosira pseudonana) 23517 % KIRGAE O JE #7288 A3 @i~ O BAB T
PRI G- 2 5228 ( Schaum, et al., 2018), a, A58 412 K 5 300 1A% % T D 8538 T ORI 0O BE ]
i, b, 300HAHE OMALELEE & KR & D BIR,

c d e
T < g
> >
3 23 E 3 Qo8 E
7 T )
= = k]
Q (@] =
=) ) @ 0.6 d:l
= 20 = = g
o = D2 2
E: E 11 3
E E = = 3™
Ancestor 22 26 32 FS Ancestor 22 26 32 FS Ancestor 22 26 32 FS
Selection environment (°C) Selection environment (°C) Selection environment (°C)
a
1000 | | 1300 |

s 16

5

2 144

2

[

124

° o =

3 Bea

o

16 22 26 30 32 35 15 22 26 30 32 35 FS

Assay temperature (°C)

B112 EE#E (Thalassiosira pseudonana) \Z33\F 2 KIRSAEO JE ) 72 ZE B A3 BRI~ O BRI
AR OB -2 5 %8 (Schaum, et al. 2018), (a) , FEHIHEIRGMET O REBRAT Lt COMILOK X
S, ENENOREFMGTRERERED (c) BCARHOEE. (d) MUGRE, (d) RFFAZIE, i, SRS
RO 7 —a— NI ZZROE,

et B C b AR BRIE A L & 52\ CEIR CoE(LEs (Evolutional Adaptation) 723
EUAHNEHL POBEINTVA, A XY 20 TEHBICHET A (A4 E7 )Xy
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7 :Bisoton betularia) DDA BADOE BN EEZIVIC L > T 10 4ETEL -5
FR<<HALNTND (Kettlewell, 1973), ZAUZB 2 WIRADEE O TIX, B TIHITZAR L DY
HOPTEMAETH 5 BHEICEDITAON > TLE I FENLRVIBINENMBE . GOEL ol
VEZFRDITHFIE o> T AREIROFRER TH D, 723, 1889 AL [FEOER] %H
WeTF v — VX s B— g 0F, EROEL L 1TBO T o< D EHEITTH 7 2 L@ LT
BO, Bxr NEHOEFEMTIIZENE BET D Z LTk EB X Tz, LaL, ZodEkico
WCDX—T 4 OFFRITRFRI A 77— B L CIERR Y Th D Z L ice b,

DO LD RIWOVEIKIE LT ) BREAE IRV THRIER EOMEOTHEIMICE L TH, 2%
BRI EARAEL D Z ERMBNTWD, K 13 IEEZKIRIZH T D I0E TIZRWA, A X
TR LT D2 BLTARKRED N7 ar w1 UL (Atlantic silversides : Menidia
menidia)l "W A A2 L 2 BIREZ S A TONT 5 HAVE THRHE LIZRFOFER TH 2 (Therkildsen,
etal. 2019), EBRTIIAMAT L1Z 1000 PLEFAF L, ZOHTH A XN Ky 7 LR K LADFK
10% 720 Z FEIRDO - 0% LIROIER & LT, b5 REE L7z, Zods, BIREOEV Za 0 bar—
NELTWD, ZORERAIRETIL2 DOME LI HEDO Y A XTI 25% D KE DR
CHEITIZE[BOENRBNZ, ZOMEITIKIC L > TREBEICE LWAERAE L L%
RIELTND, ZOWETIE, ERTHONLMET AV DORNEFO R DB T CORARM
EDR R ERE =R LTWDHEY ) Al LIEEHRER LTI LN, 2ok ok
RUWEOENDE R\ H DT ) LOERZRRICEET 2 BIEFICET L TR AR,
ELIIKICHT D7 ) AOISEDORE LB HIFEL T\ 5,

10 20

Length deviation (mm)

-10

-20

° ' 2Generastion ! °
B13 MBI DR TR BR B )G O 9545 (Therkildsen, et al. 2019)
FABYAZTRy 71 0%EBIRLIBAE, EE, AL URFT U1 0% 52BN LESAOHREOY A X

g 2 7R 9,

WA WD TRUIBERIE L & ) O BITEOREZAEB O T, MFEERE MIWs) DX 5 FER
(ISR ED— D L R B AHEME N S D, & BT, MEEAEMICK L CoRPUEIL, @ik
TIHEELS | K@D D OFE AR OLEACA B S5 TR FRIBE O 0, WM KX Do
DD ERFEe > THEL DHFIZE - T, WBIREF~OWEIS O ATREMZ 2L S HT-0 | HiiF7z0
THAREMERH D, UL, 20K ) REA LIEBREEBNC X - T4 U 28R EICK L CiEEE
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MIFHESARER N ED X DTG L TV T E 0 D02 E 3% (Cheung &
Froliche, 2020; Gruber et al. 2021) .

. SBROBE

A ETITEITIPCCIZ K D 20194F & 20224E 1 31T 2 e DM 2 2 i, WEEE CoHl
BRIRIEAVIC X 2 WKL Bk 2 MR E ) Ofk 2 7RI o 2 e £ & iz, TD
WEAKIR B0 BB S E A OITEN 2 SIS b RN TR Y . BEE S LAY ek T
EL, DRAETHLRONS T R EOBKROAEOI LixL Y - &7 b EMEIENR SISO
AR b D TH D, ZD XD RITENC X 2 8IS O, eI TEIIMICIIRBUEE O i
AR LZIES (Acclimation) & & 5 ABMRISEEZITH) 2 ENRHK D, ZoHEICiE=Y
70 BN X HHECOMREZE X 5 P COBER LB ENDD., O 2 O A%
OB TH D, o, BREZHIH LWR RO IR T2 RAEAEM R 83, ok ok
BRIEGICBREBMICHEIGT 5 2 LT, A% THEI NS KR EFICx U T2 o etE2 &b
RWEShTng,

S DITHRIEDE I 5 VT ERE TOBILE - FERFIZLD | BRBEX L AETOEIKER W
Y. BWE) OTEE O/ IS AEHNICBFT 2 BIEMZAREOIIT b b - T, 10HAAFRE
DEA LANRTHEUD Z EREODDEDRE T o TE T2, TO—JT, BREERNEAN
BT 525 X0 GE1E, BRLIFBEEOMO FL—REIT7NELCLHZ LD, 2D X
I RAERAREIS B ERTIIARANI L HRENTWS, o T, 20K ) RBREELE T CTIIEH O
Rt & & BIERBROFAITZE(L L, #ET S M T D AetEEmWn, £, HLunE
LTS 2Rt & 5,

2100 2B HREAKIRO EHFRNCE U CQEBEIR L7, A% OWEREOZICB LT
I, S EFE TV T L VR0 OB B ST, 2100 FFITB T DUFHEAEMRE~D A )
7 N EFIUTKHT DISEOFHMIXIA S TidZewy, ] 21X, IPCC/SROCC(Bindoff, etal. 2019) Tl
&R U A D RCP2.6 & RCP8.5 (2351 % 2100 4F F COWHFEIZI T DIEAFEESE ., KA
e, —WRAEEOTHZET->TND (KM14) ., ZHUCEDE 2 20OV U A CHEEFBFEREDT
B OWIEN R B D72 (¥ 14, d) . EEBIREOE(NZNICKEE (K14, 2) . K BHEERD
REVWOIT—WAEE (K14, )) Thol,

ZOFRERIT. KK OB DURHE~DOER L 5 5 WIIERE T OEB) DL < B3RO B L LI
TOBHFIERDOEEITK LT, MESREBEOMLS L LITHEY 7T v 7 b UHEO AR RN
WER & L TREW—RAEFEIFTIIR TIXET L TOENDRELS, TORRTHNEZH LW
HERLTWD, WEOEBEFENSHE 57> T R, FRICIKET ARENOIEEE T
DAEMBEEDO LB OFEBIRE REBE H 2 HRERBETH D, 2B, BLEOMILREAPE IR
LT, Zee 7 VeEOfEBIINCE S ZoHEERITH LT, B TOFERIC X L HEEEDN

BIZRR S TWHEEOMENDH Y . ZOREEMEZ DR T OB N 2@ BRI TIT ) N &
ThsdES ML H D (Lee, et al. 2015),
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K14 o0ttt - RFETT VAT TCOHEE TCOBEGFIESE () HERE TOXREE - Hik~
F o (g) . MI—IRARE () D21004EE TO TR L ZDFAE, B XL DO ARHEFEMEPMINIKRFT 50
DOWNIR (FfEFEMEIX, BT VICHKT 256, v U X256 E NI A8t HkT 5
%6 3-0)  (IPCC/SROCC, Bindoff, et al. 2019)

FEREAEPED PR T 2 5 OUFEARER & & 2 COAEYMEOBREDO K TR OV TARERTE
THOFRHITMELE 72> T D, BIZIEET VITFFEDRE K74 N— K7 4 XR—OfAEeE
IZ& D ENEIL ORI 72 EEAME O RREECH A E 7o IR 22 AR R £ O SOS & R E
53 B DI (Kaplan & Marshall, 2016; Payne, et al. 2016; Skogen, et al. 2018; Tittensor, et al.
2018; Gissi, et al. 2021), —J7, IPCCAR6(Cooley, et al.2022) TIE Z 4L 5 DE T /W BLIR TIZAH 72
AHEEMEZE D O TRUEEE) T COBMERMFARBRORMHE COTRIZ IEMIZT 2 2 L1 ER
MR TE 720 & IR TU % (Payne, et al. 2016;Heneghan, et al. 2021) . F£7-. AEERET /LI
L Clddilr, 2 - WPEARRRET VA AEK 7 1 Y =7  (Fish-MIP; Tittensor, et al. 2018) @
FERPDARINTND, ZhiE, 8 ODRELZEDARBRET VDONRT y—~v U AZfia L TH
WLIZbDTHIN, ZOXIRET N - TP TAVERICEY, B—DET LIV B EVE
DT B ARKEEM I N—T oG A TNDTD, IVIAHRbo b6 LWINEZIRAD Z
EINTE D,

Z O CITHIERIR B LT 33 D MR AR RESE O S8 2 WK B AHZ R > TR Lz, —
U5, FEEROWHE T AR IR 2 HIERIEREIC K D BREATITKIE EF- 7200 Cidlevn, Bk
LB R 8135 < OWHE CTRIFHIHET L TR Y . EEOWE COBS O RMBEOT —4
EDOBEMERDITIE, DR ELTEERA MLy =2 ERICHRTIMLERSH S, LT
X2 D& @RISR &S o EAMNRA MLy b —F R G 2 CEBRIICZNA~DIGE
ERDIEL %L oo iy, TR EIXHE R CORMNRIELZ RS LD THDH (Boyd, etal.
2018). Boye, etal. (2018) SHIBKIEBZALIZ K3 DWLEAM OWFEICHI T A F & OT-FH T, EBRIY
27 T —F & BRIZABOMGEOEER G AMEE LTI R TS EEREZICE LD D,
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1. BiFHA, EBRORT T a—F ET Ve CEA IR TFIEO EE M

WEE A DA Z HERIR IR AL 72 & DB AN LA T 502 2 FiEE LT, (a) HERER
TORERE (FaXxy) X0 BUEOBRE~OA - LI X 2 RFZE A 721 EBR B O L,
(b) BILEDFFFEREE C OWREAY O AEBRR - ITEIR 728 E OFHE, (o) BEOBRE AR 2 #/FE L
BHPRD #—7 y FOAEMFE A - T2 F2ER=EFEER, () REEORMICDOI- % A Y 2 X LFER)N
Hb, TSI INE CHEEAYOBREELA~DISE R BET ADI A NI TE=n, =
NHO7 7a—FIC K DBREOEAIZ T 2 W FHISE O RIIZZ L ENFLR LR &
Do 1o T, Ma—DIABRBIIE BT TR D LV CREDRBELZ MR L LT S n
—F OMABFDENRMLETH D,

2. PR IR & AR R AR RE R & DR D F ¥ v T DR

A RZENZ 36T DWEAEY OEBORBEER ~DISEOHRFIEEL LTI, L0 EWFH gD
MR 2RO 27 7 u—F L TRSNDIEROREZFFEST D72OICBER T U AIHES T I 'm
—FLOMTOII- &Y LEZFRAIIFEET . 2O ZON TR M TOIR L o T
%, S BITAFRENRIG O & BHE AR~ DO EBOR ORI OB L 2R S8 5 4\
VTR =V TeE TR =) T TOT7 Tua—F 2 EFATEZHZLTHSD,

3. BRIEIM~DEDEE L LTOHEE &S EZ D)

BEEL D BRI R ~ D MG E 2 PR 2 T ORI 2 ok D . EARIZ B3 5 EBRO MR
Hsnhoo5H%, LL, ZbOERPLHEGRIT. ARIKOMEN &BEIGE & F - At Aok
DBENOMEALETHENTEY, WENTHLNZO LT mHITH L Z &ﬁ)%b\o NN RS
WAL DB X T7 S HEHED EWEARTE T E O & 5 I/EI 202 BT 21213, Rz B IRME KRSy
BREAE - 72 SZBRER AP TIBIE L 295 &3k, #(kIZBd 2 :hif@ﬁ?@i%&&%fﬁ% LEINE R
ENH D,
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